Проходя по горным породам, ударная волна производит в них необратимые преобразования, которые остаются после снятия давления и могут сохраняться сколь угодно долго. Преобразование горных пород под действием ударной волны носит название ударного метаморфизма. Одним из важнейших диагностических признаков ударного метаморфизма (т.е. доказательством воздействия ударной волны) служат системы микроскопических планарных элементов или планарные деформационные структуры, которые под микроскопом при увеличениях порядка 200х выглядят как плоскопараллельные системы кристаллографически ориентированных нарушений оптической сплошности минерала. Планарные деформационные структуры наиболее ярко проявлены в кварце (рис. 3). Под оптическим микроскопом планарные элементы в кварце неразрешимы, но применение просвечивающей электронной микроскопии показало, что в ударно-метаморфизованных свежих образцах они состоят из близкорасположенных ламеллей аморфного кремнезема толщиной в первые десятки сотни нанометров. Вторичные изменения в результате низкотемпературной гидротермальной переработки импактитов (что в общем характерно для импактных толщ) приводят к раскристаллизации аморфного кремнезема ламеллей и формирования вдоль нарушений газовых включений. Образовавшиеся таким образом декорированные планарные деформационные структуры весьма характерны для кварца импактных пород. Другой важный диагностический признак ударного метаморфизма образование диаплектового стекла (преимущественно по кварцу и полевым шпатам) аморфной фазы, характеризующейся промежуточными показателем преломления и плотностью между кристаллическим состоянием и стеклом плавления и не имеющей текстурных
Первая стадия так называемая контактная стадия или стадия сжатия, начинается с момента соприкосновения метеороидного тела с твердой поверхностью, в результате чего в плоскости соприкосновения метеороида (ударника ) с веществом поверхности (мишени) образуется ударная волна. (рис. 2 а,б). Благодаря высоким скоростям соударения, в начальный момент она сжимает и нагревает вещество. Так, при падении железного астероида со скоростью 30 км/сек в контактной зоне развивается давление около 1500 ГПа , что примерно в 50 раз выше давления в центре Земли, а температура сжатого вещества достигает многих десятков тысяч градусов. После сброса ударного давления при разгрузке, запасенной тепловой энергии в приконтактной зоне остается достаточно для полного или частичного испарения (в этом случае совместно с плавлением) вещества ударника и части вещества мишени. Именно этим и объясняется отсутствие видимого метеоритного вещества в взрывных метеоритных кратерах. Лишь в небольших структурах, образованных низкоскоростными железными метеоритами, как например Аризонский метеоритный кратер в США или кратер Хенбери в Австралии, на валу и в окрестностях кратеров можно найти непереплавленные обломки ударника. Распространяясь вглубь мишени, давление в ударной волне, фронт которой имеет примерно сферическую форму, падает. Соответственно, материальными последствиями прохождения такой ослабевающей ударной волны будут концентрические зона плавления, изменения горных пород в твердом состоянии и дробления. Все эти изменения, начиная от испарения и до простого дробления, называются ударными преобразованиями или ударным (импактным) метаморфизмом, а образующиеся горные породы носят общее название импактиты. Из-за высоких скоростей распространения ударной волны - многие километры в секунду этот процесс занимает от сотых долей до секунд в зависимости от размера ударяющего тела.
Успехи газодинамики и механики быстропротекающих процессов, в первую очередь обусловленные военными нуждами, нашли свое отражение и в понимании процессов метеоритного кратерообразования. Совместными усилиями геологов и физиков в настоящее время созданы модели, позволяющая хорошо описывать формирование кратера, по крайней мере на его начальных этапах. В настоящее время принято для удобства выделять три стадии образования кратерной полости стадия сжатия, стадия экскавации и стадия модификации [Melosh, 1989]. Границы между ними полностью условны, однако каждая стадия характеризуется тем или иным превалирующим моментом.
Рис. 1. Профили давления и массовой скорости в ударной волне. Фронт ударной волны распространяется со скоростью D, большей скорости звука в невозмущенной среде, скорость распространения головной части chR больше скорости фронта, а скорость хвостовой части ctR меньше. За счет неадиабатичности ударного сжатия вещество после разгрузки обладает некоторой остаточной массовой скоростью.
Образование ударно-взрывных метеоритных кратеров начинается с момента соударения высокоскоростного внеземного тела с поверхностью Земли. Кратер формируется благодаря действию интенсивной ударной волны, которая возникает в точке соударения и радиально распространяется наружу через породы мишени. Ударные волны являются волнами сжатия, развивающие в твердых средах высокие напряжения. Фронт ударной волны можно представить себе как поверхность разрыва, распространяющуюся по среде со сверхзвуковой скоростью, причем перед фронтом ударной волны вещество находится в невозмущенном состоянии, а за фронтом оно сжато и обладает массовой скоростью, вектор которой совпадает по направлению с направлением распространения фронта ударной волны (Рис.1). Волна разгрузки может образоваться при выходе ударной волны на свободную поверхность, а ее головная часть распространяется со скоростью, большей скорости распространения фронта, так что по прошествии некоторого времени первоначально прямоугольный импульс сжатия приобретает треугольную форму. Соударение тела, обладающего скоростью в несколько десятков км/сек, создает в области соприкосновения ударные давления в несколько сотен ГПа (1 ГПа ≈ 10 000 атм) при скорости распространения ударной волны больше 15 км/сек. Распространяясь по горным породам, ударная волна ослабевает, но все равно давление в ней превосходит предел упругости горных пород (примерно или меньше 0,5 ГПа), которые испытывают в ней необратимые трансформации, не встречающиеся при обычных геологических процессах. Вследствие неадиабатичности ударного сжатия и адиабатичности разгрузки, вещество после сброса ударного давления обладает некоторой массовой скоростью, т.е. течет. Именно это течение приводит в движение массы пород мишени и ответственно за образование кратерной полости.
Атмосфера Земли, помимо всего прочего, играет и роль щита, оберегающего ее поверхность от высокоскоростных падений (> 11 км/сек) вторгающихся в нее небольших космических тел. Эти тела в результате торможения подают с небольшой скоростью в виде космической пыли или метеоритов, что зависит от их начальных размеров. Однако более крупные тела могут прорваться сквозь атмосферу, практически не потеряв своей первоначальной энергии движения. Расчеты показывают, что тело размером уже в 10 20 метров может столкнуться с твердой поверхностью Земли со скоростью в первые километры в секунду, что достаточно для образования взрывного (или импактного) метеоритного кратера. Тела размером больше 100 метров практически не теряют своей первоначальной скорости входа в атмосферу. Скорости подхода метеороидов к Земле лежат в интервале 11 76 км/сек с наиболее вероятной скоростью около 25 км/сек. Для сравнения стоит отметить, что это значение гораздо больше максимальных начальных скоростей снарядов современной артиллерии (1 2 км/сек) и практически недостижимо при больших массах ударника для самых изощренных лабораторных метательных установок. При соударении с плотными горными породами, слагающими земную поверхность, происходит мгновенное торможение ударяющего тела с практически полным переходом его кинетической энергии в тепловую энергию и энергию движения материала мишени т.е. происходит взрыв, приводящий к образованию метеоритного кратера.
Выпадение космических тел на Землю
Д.Д. Бадюков, ГЕОХИ РАН
МЕТЕОРИТНЫЕ КРАТЕРЫ НА ТЕРРИТОРИИ РОССИИ
Коллекция лунных образцов
Метеоритные кратеры России
Выпадение космических тел на Землю
Метеоритные кратеры России
Метеоритные кратеры России
ЛАБОРАТОРИЯ МЕТЕОРИТИКИ ГЕОХИ РАН
Комментариев нет:
Отправить комментарий